Journal of Organometallic Chemistry, 411 (1991) 215–223 Elsevier Sequoia S.A., Lausanne JOM 21766

Tricyclohexylphosphinecarbondisulphide seven-coordinate complexes of molybdenum(II) and tungsten(II)

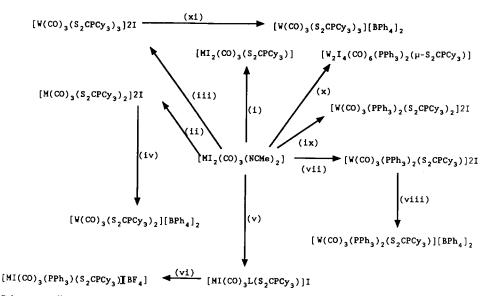
Paul K. Baker * and Dafydd ap Kendrick

Department of Chemistry, University of Wales, Bangor, Gwynedd LL57 2UW (UK) (Received October 16th, 1990)

Abstract

The complexes $[MI_2(CO)_3(NCMe)_2]$ (M = Mo or W) react with one equivalent of S₂CPCy₁ in CH_2Cl_2 to afford the new seven-coordinate complexes [MI₂(CO)₃(S₂CPCy₃)]. Reaction of $[MI_2(CO)_3(NCMe)_2]$ (M = Mo or W), with two equivalents of S₂CPCy₃ afford the new dicationic complexes $[M(CO)_3(S_2CPCy_3)_2]$ in good yield. The dicationic nature of $[W(CO)_3(S_2CPCy_3)_2]$ was confirmed by the formation of the complex [W(CO)₃(S₂CPCy₃)₂][BPh₄]₂ by iodide exchange with Na[BPh₄]. Further reaction in situ of $[M(CO)_3(S_2CPCy_3)_2]2I$ with one equivalent of S_2CPCy_3 afforded the tris ligand complex $[W(CO)_3(S_2CPCy_3)_3]2I$. The reaction of $[W(CO)_3(S_2CPCy_3)_3]2I$ with Na[BPh₄] in acetonitrile gave $[W(CO)_3(S_2CPCy_3)_3][BPh_4]_2$, which confirmed the dicationic nature of $[W(CO)_{3}(S_{2}CPCy_{1})_{3}]$ 21. The mixed ligand complexes $[MI(CO)_{3}(PPh_{3})(S_{2}CPCy_{3})]$ (M = Mo or W) and $[WI(CO)_3L(S_2CPCy_3)]I$ (L = P(OPh)₃, AsPh₃ or SbPh₃) were synthesised by reaction of $[MI_2(CO)_3 (NCMe)_2$ with an equimolar quantity of L in CH_2Cl_2 followed by an *in situ* reaction with one equivalent of S₂CPCy₃. The cationic nature of [MI(CO)₃(PPh₃)(S₂CPCy₃)]I was confirmed by iodide exchange with Na[BF4] to afford the complexes [MI(CO)₃(PPh₃)(S₂CPCy₃)][BF4]. The reaction of two equivalents of $[WI_2(CO)_3(NCMe)(PPh_3)]$ with S₂CPCy₃ afforded the ligand-bridged complex $[W_2I_4(CO)_6(PPh_3)_2(\mu-S_2CPCy_3)]$. Treatment of $[WI_2(CO)_3(NCMe)_2]$ with two equivalents of PPh₃ followed by an in situ reaction with one equivalent of S₂CPCy₃ afforded the dicationic complex $[W(CO)_3(PPh_3)_2(S_2CPCy_3)]$ 2I. The ionic nature of the complex was confirmed by iodide exchange with Na[BPh₄] to give [W(CO)₃(PPh₃)₂(S₂CPCy₃)][BPh₄]₂. Treatment of [W(CO)₃(PPh₃)₂(S₂CPCy₃)]2I with one further equivalent of S2CPCy3 afforded the complex [W(CO)3(PPh3)2(S2CPCy3)2]2I. The low temperature ¹³C NMR spectra (carbonyl region) of several seven-coordinate complexes are interpreted to suggest likely structures for these compounds.

Introduction


Over the last 30 years there has been much interest in seven-coordinate complexes of molybdenum(II) and tungsten(II). Many examples of seven-coordinate complexes containing anionic group 6B donor ligands such as dithiocarbamates, xanthates and piconalines have been reported [1–7]. However, comparatively few examples of seven-coordinate molybdenum(II) and tungsten(II) complexes containing neutral 6B donor ligands have been reported. Examples include [MX₂(CO)₃(dth)] (M = Mo or W; X = Br or I; dth = 2,5-dithiahexane) reported by Mannerskantz and Wilkinson in 1962 [8], and the first selenium seven-coordinate complexes $[MX_2(CO)_3(LL')]$ (M = Mo or W; X = Cl or Br; $LL' = Ph_2P(CH_2)P(Se)Ph_2$) and $[MoX_2(CO)_2(LL')_2]$ (X = Cl or Br; $LL' = Ph_2P(CH_2)P(Se)Ph_2$) or $[MoX_2(CO)_3\{Ph_2As(CH_2)P(Se)Ph_2\}]$ (X = Cl or Br) reported by Colton and Panagiotidou in 1987 [9]. Hitherto no examples of seven-coordinate complexes contain-

ing tricyclohexylphosphinecarbondisulphide have been reported.

In recent years, we have been studying the chemistry of the seven-coordinate complexes $[MI_2(CO)_3(NCMe)_2]$ (M = Mo or W) which are synthesised in quantitative yield by reaction of the zero-valent complexes $[M(CO)_3(NCMe)_3]$ with an equimolar quantity of I_2 at 0°C [10]. The bis-acetonitrile compounds $[MI_2(CO)_3(NCMe)_2]$ have been found to react readily with a range of neutral monodentate oxygen and sulphur donor ligands (see, for example Ref. 11,12). In this paper, we describe the preparation of some new seven-coordinate complexes containing the neutral sulphur donor ligand S_2CPCy_3 .

Results and discussion

The neutral sulphur donor ligand tricyclohexylphosphinecarbondisulphide reacts with the complexes $[MI_2(CO)_3(NCMe)_2]$ (M = Mo or W), $[MI_2(CO)_3(NCMe)-(PPh_3)]$, $[WI_2(CO)_3(NCMe)L]$ (L = P(OPh)₃, AsPh₃ or SbPh₃) or $[WI_2(CO)_3-(PPh_3)_2]$ to give a range of new seven-coordinate complexes. The reactions described in this paper are summarised in Scheme 1. All the new seven-coordinate complexes have been characterised by elemental analysis (C, H and N) (Table 1), IR

Scheme 1. All reactions carried out in CH_2Cl_2 at room temperature except (iv), (viii) and (xi) which were carried out in NCMe. Reagents: (i) M = Mo or W, S_2CPCy_3 for 5 min. (ii) M = Mo or W, $2S_2CPCy_3$ for 5 min. (iii) M = W, $3S_2CPCy_3$ for 30 min. (iv) M = W, $2Na[BPh_4]$ for 18 h. (v) M = Mo or W, $L = PPh_3$ (1 min), S_2CPCy_3 for 5 min; M = W, $L = P(OPh)_3$ (5 min), $AsPh_3$ (3 min), $SbPh_3$ (5 min). (vi) M = Mo or W, $L = PPh_3$, $Na[BF_4]$ for 18 h. (vii) M = W, $2PPPh_3$ (5 min), S_2CPCy_3 (5 min). (viii) M = W, $2Na[BPh_4]$ for 18 h. (ix) M = W, $2PPh_3$ (5 min), $2S_2CPCy_3$ (5 min). (x) M = W, $2Na[BPh_4]$ for 18 h. (xi) M = W, $2Na[BPh_4]$ for 18 h.

Complex	Colour	Yield (%)	Analysis (Found (calcd) (%))	
			c	Н
$[MoI_2(CO)_3(S_2CPCy_3)] \cdot CH_2Cl_2$	Dark purple	66	31.6	4.5
(1)	•••		(31.6)	(4.0)
$[WI_2(CO)_3(S_2CPCy_3)]$	Dark purple	74	30.3	3.6
(2)	••		(30.1)	(3.8)
$[Mo(CO)_3(S_2CPCy_3)_2]2I \cdot 1\frac{1}{2}CH_2Cl_2$	Dark purple	70	40.1	5.8
(3)	• •		(40.1)	(5.4)
$[W(CO)_3(S_2CPCy_3)_2]^2I$	Dark purple	76	39.7	5.7
(4)	1 1		(39.9)	(5.4)
$[W(CO)_3(S_2CPCy_3)_2][BPh_4]_2$	Dark red	61	65.4	6.7
(5)			(66.0)	(6.6)
[W(CO) ₃ (S ₂ CPCy ₃) ₃]2I	Dark purple	83	44.8	6.5
(6)			(44.3)	(6.3)
$[W(CO)_3(S_2CPCy_3)_3][BPh_4]_2$	Dark brown	69	65.2	7.8
(7)			(65.6)	(7.1)
[MoI(CO) ₃ (PPh ₃)(S ₂ CPCy ₃)]I	Dark green	80	45.6	4.6
(8)	-		(45.6)	(4.6)
$[MoI(CO)_3(PPh_3)(S_2CPCy_3)][BF_4]$	Green	71	48.0	4.5
(9)			(47.5)	(4.8)
$[WI(CO)_3(PPh_3)(S_2CPCy_3)]I$	Dark purple	71	42.1	4.6
(10)			(42.1)	(4.2)
$[WI(CO)_3(PPh_3)(S_2CPCy_3)][BF_4] \cdot CH_2Cl_2$	Green	60	42.0	4.1
(11)			(41.6)	(4.4)
$[WI(CO)_3 \{P(OPh)_3\} (S_2 CPCy_3)]I$	Dark purple	87	41.0	4.0
(12)			(40.4)	(4.1)
[WI(CO) ₃ (AsPh ₃)(S ₂ CPCy ₃)]I	Dark purple	70	40.5	3.6
(13)			(40.6)	(4.1)
$[WI(CO)_3(SbPh_3)(S_2CPCy_3)]I$	Dark purple	87	41.0	4.0
(14)			(40.4)	(4.1)
$[W(CO)_3(PPh_3)_2(S_2CPCy_3)]2I \cdot 1\frac{1}{2}CH_2Cl_2$	Dark purple	74	46.6	4.4
(15)			(46.7)	(4.3)
$[W(CO)_3(PPh_3)_2(S_2CPCy_3)][BPh_4]_2$	Green	71	70.8	5 .7
(16)			(71.2)	(5.8)
$[W(CO)_{3}(PPh_{3})_{2}(S_{2}CPCy_{3})_{2}]2I \cdot 1\frac{1}{2}CH_{2}Cl_{2}$	Dark purple	76	50.0	5.3
(17)	4 1 ⁻		(50.0)	(5.3)
$[W_2I_4(CO)_6(PPh_3)_2(\mu-S_2CPCy_3)] \cdot CH_2Cl_2$	Dark brown	82	37.1	3.3
(18)			(37.1)	(3.3)

Table 1 Physical and analytical data for $[MI_2(CO)_3(S_2CPCy_3)]$ and derivatives

spectroscopy (Table 2) and selected complexes by ¹H NMR spectroscopy (Table 3). The complexes 1, 3, 11, 15, 17 and 18 were confirmed as 1/2 CH₂Cl₂, CH₂Cl₂ or 1 1/2 CH₂Cl₂ solvates by repeated elemental analyses and ¹H NMR spectroscopy. Magnetic susceptibility measurements of the seven-coordinate complexes showed them to be diamagnetic, which was expected, since complexes 1–18 obey the 18-electron rule. The complexes described in this paper are moderately air-stable in the solid state if stored under a nitrogen atmosphere, but are much more air-sensitive in solution. The seven-coordinate complexes 1–18 described in this paper are soluble in chlorinated solvents such as CH₂Cl₂ and CHCl₃, but are insoluble in diethylether and hydrocarbon solvents.

Complex	ν (C=O) (cm ⁻¹)	
1	2000(s), 1965(s) and 1925(s)	
2	2005(s), 1945(s) and 1905(s)	
3	2030(s), 1975(s) and 1925(s)	
4	2020(s), 1950(s) and 1915(s)	
5	2025(s), 1960(s) and 1920(s)	
6	2005(s), 1980(s) and 1915(s)	
7	2005(s), 1970(s) and 1925(s)	
8	2000(s), 1950(s) and 1915(s)	
9	2005(s), 1940(s) and 1920(s)	
10	2010(s), 1975(m) and 1920(s)	
11	2000(m), 1940(s) and 1860(s)	
12	2000(m), 1950(s) and 1920(s)	
13	2000(s), 1960(s) and 1925(s)	
14	2000(s), 1935(s) and 1880(m)	
15	2010(s), 1945(s) and 1905(m)	
16	2015(m), 1955(s) and 1885(s)	
17	2000(m), 1950(s) and 1895(m)	
18	2010(s), 2000(m), 1980(m), 1935(s) and 1880(m)	

IR data ^a for [MI₂(CO)₃(S₂CPCy₃)] and derivatives

^a Spectra recorded as thin films between NaCl plates in CHCl₃; m = medium, s = strong.

The complexes $[MI_2(CO)_3(NCMe)_2]$ (M = Mo or W) react with an equimolar quantity of S₂CPCy₃ in CH₂Cl₂ for 5 min to afford the complexes $[MI_2(CO)_3-(S_2CPCy_3)]$ (1 and 2). Reaction of $[MI_2(CO)_3(NCMe)_2]$ with two equivalents of S₂CPCy₃, rapidly afforded the purple cationic products $[M(CO)_3(S_2CPCy_3)_2]2I$ (3 and 4). The dicationic nature of the complexes was confirmed by preparing the tetraphenylborate salt $[W(CO)_3(S_2CPCy_3)_2][BPh_4]_2$ (5) by reaction of $[W(CO)_3(S_2CPCy_3)_2]2I$ with Na[BPh₄] in NCMe. Reaction of $[WI_2(CO)_3(NCMe)_2]$

Table 3

Selected	'H HMR	. data ^a	for [MI ₂ (CO) ₃ (S ₂ CPCy ₃)] and derivative	es
----------	--------	---------------------	--	----

Complex	δ (ppm)
1	5.3 (s, 2H, CH ₂ Cl ₂); 1.95, 1.8, 1.7, 1.3 (m, 33H, Cy)
3	5.3 (s, 3H, CH ₂ Cl ₂); 1.85 (m, 36H, Cy); 1.3 (m, 30H, Cy)
5	7.5 (m, 40H, Ph); 1.9 (m, 36H, Cy); 1.3 (m, 30H, Cy)
7	7.4 (m, 40H, Ph); 1.85 (m, 54H, Cy); 1.25 (m, 45H, Cy)
8	7.55 (m, 15H, Ph); 1.95, 1.75 (d, 18H, Cy); 1.35(s, 15H, Cy)
9	7.45 (m, 15H, Ph); 1.9, 1.8 (m, 18H, Cy); 1.35 (d, 15H, Cy)
10	7.65 (m, 15H, Ph); 1.95, 1.8 (d, 18H, Cy); 1.35 (m, 15H, Cy)
11	7.7 (m, 3H, Ph); 7.48 (m, 12H, Ph); 5.3 (s, 2H, CH ₂ Cl ₂); 1.9, 1.8 (d, 18H, Cy); 1.35 (m, 15H, Cy)
12	7.35 (m, 3H, Ph); 7.2 (m, 6H, Ph); 6.8 (m, 6H, Ph); 2.0, 1.8 (d, 18H, Cy); 1.3 (d, 15H, Cy)
13	7.35 (m, 15H, Ph); 2.0, 1.8, 1.15 (m, 33H, Cy)
14	7.55 (m, 3H, Ph), 7.45 (m, 6H, Ph); 7.32 (m, 6H, Ph); 2.0, 1.8 (m, 18H, Cy); 1.38 (d, 15H, Cy)
15	7.55 (m, 30H, Ph); 5.3 (s, 3H, CH ₂ Cl ₂); 1.85, 1.35 (m, 33H, Cy)
16	7.5 (m, 70H, Ph); 1.8 (m, Cy), 1.3 (m, Cy, 66H)
17	7.5 (m, 30H, Ph); 5.3 (s, 3H, CH ₂ Cl ₂); 1.95, 1.8 (d, Cy), 1.35 (s, Cy, 66H)
18	7.5 (bm, 30H, Ph): 5.3 (s, 2H, CH ₂ Cl ₂); 1.95, 1.8 (d, 18H, Cy); 1.45 (m, 15H, Cy)

^a Spectra recorded in CDCl₃ (+25°C) and referenced to Me₄Si. b, broad; d, doublet; m, multiplet; s, singlet.

Table 2

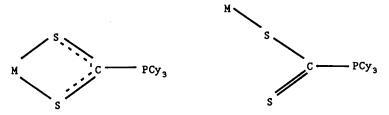


Fig. 1. Bidentate (a) and monodentate (b) coordination of a tricyclohexylphosphinecarbondisulphide ligand attached to a transition-metal centre.

with two equivalents of S_2CPCy_3 , followed by addition of one further equivalent of S_2CPCy_3 in situ afforded the purple dicationic complex $[W(CO)_3(S_2CPCy_3)3]$ 21. One of the S_2CPCy_3 ligands must coordinate to the metal in a bidentate manner, with two S_2CPCy_3 ligands bonding monodentately. It would appear, therefore, that the S_2CPCy_3 ligands prefer to bond in a monodentate fashion in preference to bonding bidentately when this would involve the loss of CO. The bidentate and monodentate coordination of a S_2CPCy_3 ligand to a transition-metal centre is shown in Fig. 1. It should be noted that Riera and co-workers [13] have prepared and structurally characterised by X-ray crystallography the manganese complex fac-[Mn(CO)_3(η^1 - S_2CPCy_3)][CIO₄] which contains both mono- and bidentate coordination of the S_3CPCy_3 ligand.

The mixed ligand complexes $[MI(CO)_3L(S_2CPCy_3)]I$ (M = Mo or W, L = PPh₃; M = W, L = P(OPh)₃, AsPh₃ or SbPh₃) (8, 10, 12-14) were prepared by reacting $[MI_2(CO)_3(NCMe)_2]$ with one equivalent of L in CH₂Cl₂ at room temperature to give $[MI_2(CO)_3(NCMe)L]$ which have been previously described [14]. The monoacetonitrile complexes react *in situ* with one equivalent of ligand to give the new purple cationic complexes $[MI(CO)_3L(S_2CPCy_3)]I$ (8, 10, 12-14). The cationic nature was confirmed by the preparation of the complexes $[MI(CO)_3(PPh_3)-(S_2CPCy_3)][BF_4]$ (M = Mo or W) (9 and 11) by iodide exchange with Na[BF₄].

The low temperature ¹³C NMR spectra $(-70 \,^{\circ}\text{C}, \text{CD}_2\text{Cl}_2)$ of $[WI(CO)_3(\text{PPh}_3)-(\text{S}_2\text{CPCy}_3)]I$ (10) and $[WI(CO)_3(\text{AsPh}_3)(\text{S}_2\text{CPCy}_3)]I$ (13) showed resonances at $\delta = 200.73$ and 228.10 ppm, and 200.77 and 228.24 ppm respectively. From the work of Colton and Kevekordes [15] on the low temperature ¹³C NMR spectra of seven-coordinate complexes of molybdenum(II) and tungsten(II) it is likely that the low field resonances at $\delta = 228.10$ and 228.24 ppm respectively are due to a carbonyl ligand in the capping position of a capped octahedral structure. Ganscow and Vernon [16] have suggested that the low field resonances for carbonyl ligands in the capping position is due to π -backdonation and the carbonyl resonance occurs at lower field compared to an octahedral carbonyl resonance. The most likely structure of these complexes is shown in Fig. 2 with the capped face furthest away from the bulky S₂CPCy₃ ligand. The proposed capped octahedral structure is expected as most seven-coordinate complexes of molybdenum(II) and tungsten(II) have such a geometry [17–24].

The reaction of $[WI_2(CO)_3(NCMe)_2]$ with two equivalents of triphenylphosphine give the previously reported $[WI_2(CO)_3(PPh_3)_2]$ [25]. Further reaction *in situ* with one equivalent of S_2CPCy_3 afforded the purple dicationic complex $[W(CO)_3(PPh_3)_2(S_2CPCy_3)]2I \cdot 1\frac{1}{2}CH_2Cl_2$ (15). The dicationic nature was confirmed by the synthesis of the complex $[W(CO)_3(PPh_3)_2(S_2CPCy_3)]$ [BPh₄]₂ (16) by Table 4

Low temperature ¹³C NMR data (δ ppm)^{*a*} (carbonyl resonances) for selected seven-coordinate tricyclohexylphosphinecarbondisulphide complexes of tungsten(II)

Complex	δ(C=O) (ppm)	· · · · · · · · · · · · · · · · · · ·
10	200.73, 228.10	
13	200.77, 228.24	
18	200.67, 228.15	

^a Spectra recorded in CD₂Cl₂ (-70°C) and referenced to Me₄Si.

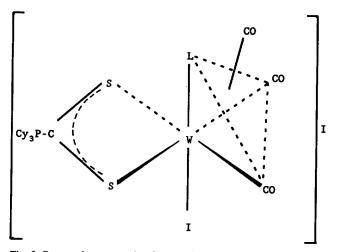


Fig. 2. Proposed structure for the complexes $[WI(CO)_3L(S_2CPCy_3)]I$ (L = PPh₃ and AsPh₃).

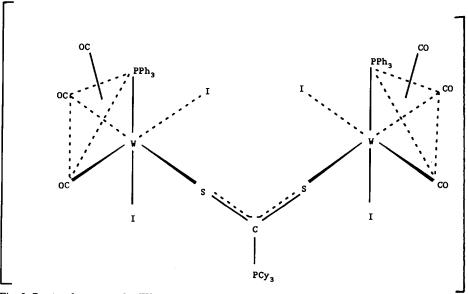


Fig. 3. Proposed structure for $[W_2I_4(CO)_6(PPh_3)_2(\mu-S_2CPCy_3)]$.

iodide exchange of $[W(CO)_3(PPh_3)_2(S_2CPCy_3)]2I \cdot 1\frac{1}{2}CH_2Cl_2$ with Na[BPh₄]. Reaction *in situ* of $[WI_2(CO)_3(PPh_3)_2]$ with two equivalents of S_2CPCy_3 afforded the dicationic complex $[W(CO)_3(PPh_3)_2(S_2CPCy_3)_2]2I \cdot 1\frac{1}{2}CH_2Cl_2$ (17). The S_2CPCy_3 ligands bond in a monodentate manner to the central metal in preference to loss of carbonyl.

The reaction of $[WI_2(CO)_3(NCMe)_2]$ with triphenylphosphine to give $[WI_2(CO)_3(NCMe)(PPh_3)]$ followed by reaction *in situ* with a half-equivalent of S_2CPCy_3 afforded the dark brown complex $[W_2I_4(CO)_6(PPh_3)_2(\mu-S_2CPCy_3)]$. CH₂Cl₂ (18) containing a bridging S_2CPCy_3 ligand. The low temperature ¹³C (-70°C, CD₂Cl₂) NMR spectrum of 18 showed two carbonyl resonances at $\delta = 200.67$ and 228.15 ppm. The low field resonance at $\delta = 228.15$ ppm from the observations of Colton and Kevekordes [15] is likely to be due to the carbonyl ligands in the unique capping positions of two capped octahedral structures, bridged by the S₂CPCy₃ ligand. The most likely geometry for this complex is shown in Fig. 3, with equivalent octahedral carbonyls and the triphenylphosphines furthest away from the bulky S₂CPCy₃ bridging ligand.

Experimental

The preparation and purification of the complexes described in this paper were carried out under an atmosphere of dry nitrogen using standard vacuum/Schlenk line techniques. Dichloromethane was dried over P_2O_5 and distilled, and all solvents were degassed before use. The compounds $[MI_2(CO)_3(NCMe)_2]$ (M = Mo or W), $[MI_2(CO)_3(NCMe)L]$ (L = PPh₃, P(OPh)₃, AsPh₃ or SbPh₃) and $[WI_2(CO)_3(PPh_3)_2]$ were synthesised by the literature methods [10,14,25], and all chemicals were purchased from commercial sources. Elemental analyses (C, H and N) were determined by using a Carlo Erba Elemental Analyser MOD 1106 (using helium as a carrier gas). IR spectra were recorded on a Perkin–Elmer 1430 ratio recording infrared spectrophotometer. ¹H NMR spectra were recorded on a Bruker AC 250 CP/MAS NMR spectrometer and the low temperature ¹³C NMR spectra were recorded on a Bruker WH 400 NMR spectrometer (all spectra were calibrated against tetramethylsilane). Magnetic susceptibilities were determined using a Johnson–Matthey magnetic susceptibility balance.

Preparation of $[MoI_2(CO)_3(S_2CPCy_3)] \cdot CH_2Cl_2$ (1)

To $[MoI_2(CO)_3(NCMe)_2]$ (0.500 g, 0.969 mmol) dissolved in CH_2Cl_2 (15 cm³) with continuous stirring under a stream of dry nitrogen was added S_2CPCy_3 (0.345 g, 0.969 mmol). After stirring for 5 min, the mixture was filtered, and the solvent removed *in vacuo* to give the dark purple crystalline complex $[MoI_2(CO)_3(S_2CPCy_3)] \cdot CH_2Cl_2$ (1) (0.56 g, 66%) which was recrystallised from CH_2Cl_2 . A similar reaction of $[WI_2(CO)_3(NCMe)_2]$ with an equimolar quantity of S_2CPCy_3 afforded $[WI_2(CO)_3(S_2CPCy_3)]$ (2) (see Table 1 for physical and analytical data).

Preparation of $[Mo(CO)_3(S_2CPCy_3)_2]2I \cdot 1\frac{1}{2}CH_2Cl_2$ (3)

To $[MoI_2(CO)_3(NCMe)_2]$ (0.500 g, 0.969 mmol) dissolved in CH_2Cl_2 (15 cm³) with continuous stirring under a stream of dry nitrogen was added S_2CPCy_3 (0.691 g, 1.94 mmol). After stirring for 5 min, the mixture was filtered, and the solvent removed *in vacuo* to afford a dark purple crystalline complex $[Mo(CO)_3-(S_2CPCy_3)_2]2I \cdot 1\frac{1}{2}CH_2Cl_2$ (3) (0.86 g, 70%) which was recrystallised from CH_2Cl_2 .

A similar reaction of $[WI_2(CO)_3(NCMe)_2]$ with two equivalents of S_2CPCy_3 afforded $[W(CO)_3(S_2CPCy_3)_2]2I$ (4).

 $[W(CO)_3(S_2CPCy_3)_2]2I$ also reacts *in situ* with two equivalents of Na[BPh₄] in NCMe for 18 h to afford the iodide exchange complex $[W(CO)_3(S_2CPCy_3)_2]$ - $[BPh_4]_2$ (5) (see Table 1 for physical and analytical data).

Preparation of $[W(CO)_3(S_2CPCy_3)_3]2I$ (6)

To $[WI_2(CO)_3(NCMe)_2]$ (0.500 g, 0.828 mmol) dissolved in CH_2Cl_2 (15 cm³) with continuous stirring under a stream of dry nitrogen was added S_2CPCy_3 (0.886 g, 2.48 mmol). After stirring for 30 min, the mixture was filtered, and the solvent removed *in vacuo*, gave the dark purple crystalline complex $[W(CO)_3(S_2CPCy_3)_3]2I$ (6) (1.05 g, 83%) which was recrystallised from CH_2Cl_2 .

Preparation of $[W(CO)_3(S_2CPCy_3)_3][BPh_4]_2$ (7)

To $[WI_2(CO)_3(NCMe)_2]$ (0.500 g, 0.828 mmol) dissolved in NCMe (15 cm³) with continuous stirring under a stream of dry nitrogen was added S₂CPCy₃ (0.886 g, 2.48 mmol). After 5 min, Na[BPh₄] (0.567 g, 1.656 mmol) was added *in situ*, and the mixture stirred for 18 h; after which the solvent was removed *in vacuo*. The product was resolvated in CH₂Cl₂ (15 cm³) and filtered to remove NaI, and the solvent was removed *in vacuo* to give the dark red anion exchanged complex [W(CO)₃-(S₂CPCy₃)₃][BPh₄]₂ (7) (1.13 g, 69%), which was recrystallised from CH₂Cl₂.

Preparation of $[MoI(CO)_3(PPh_3)(S_2CPCy_3)]I(8)$

To $[MoI_2(CO)_3(NCMe)_2]$ (0.500 g, 0.969 mmol) dissolved in CH_2Cl_2 (15 cm³) with continuous stirring under a stream of dry nitrogen was added PPh₃ (0.254 g, 0.969 mmol). After stirring for 1 min, S₂CPCy₃ (0.345 g, 0.969 mmol) was added and the mixture was stirred for a further 5 min. Filtration, followed by removal of the solvent *in vacuo* gave the dark green complex $[MoI(CO)_3(PPh_3)(S_2CPCy_3)]I$ (8) (0.82 g, 80%), which was recrystallised from CH_2Cl_2 .

Similar reactions of $[WI_2(CO)_3(NCMe)_2]$ with an equimolar quantity of L $(L = PPh_3, P(OPh)_3, AsPh_3 \text{ or } SbPh_3)$ followed by an *in situ* reaction with one equivalent of S_2CPCy_3 gave the new compounds $[WI(CO)_3L(S_2CPCy_3)]I$ (10, 12–14). Reaction times for $[WI_2(CO)_3(NCMe)_2] + L \rightarrow [WI_2(CO)_3(NCMe)L] + NCMe$ and $[WI_2(CO)_3(NCMe)L] + S_2CPCy_3 \rightarrow [WI(CO)_3L(S_2CPCy_3)]I + NCMe$ at 25°C are: 10: L = PPh_3, 1 min; S_2CPCy_3, 5 min; 12: L = P(OPh_3)_3, 5 min; S_2CPCy_3, 5 min; 13: L = AsPh_3, 3 min; S_2CPCy_3, 5 min; 14: L = SbPh_3, 5 min; S_2CPCy_3, 5 min.

The complexes $[MI(CO)_3(PPh_3)(S_2CPCy_3)]I$ (8 and 10) also react *in situ* with one equivalent of Na[BF₄] in CH₂Cl₂ to give $[MI(CO)_3(PPh_3)(S_2CPCy_3)][BF_4]$ (M = Mo or W) (9 and 11).

Preparation of $[W(CO)_3(PPh_3)_2(S_2CPCy_3)_n] 2I \cdot 1\frac{1}{2}CH_2Cl_2$ (n = 1 or 2) (15 and 17)

To $[WI_2(CO)_3(NCMe)_2]$ (0.500 g, 0.828 mmol) dissolved in CH_2Cl_2 (15 cm³) with continuous stirring under a stream of dry nitrogen was added PPh₃ (0.434 g, 1.656 mmol). After stirring for 5 min, S₂CPCy₃ (0.295 g, 0.828 mmol (15)) or S₂CPCy₃ (0.591 g, 1.65 mmol (17)) were added. The mixture was stirred for 5 min. Filtration, followed by removal of the solvent *in vacuo* gave the dark purple crystalline complexes $[W(CO)_3(PPh_3)_2(S_2CPCy_3)_2]2I \cdot 1\frac{1}{2}CH_2Cl_2$ (15) (0.94 g, 74%) or $[W(CO)_3(PPh_3)_2(S_2CPCy_3)_2]2I \cdot 1\frac{1}{2}CH_2Cl_2$ (17) (1.18 g, 76%) which were re-

crystallised from CH₂Cl₂. [W(CO)₃(PPh₃)₂(S₂CPCy₃)]2I $\cdot 1\frac{1}{2}$ CH₂Cl₂ also reacts *in situ* with two equivalents of Na[BPh₄] in NCMe to give [W(CO)₃(PPh₃)₂-(S₂CPCy₃)][BPh₄]₂ (16).

Preparation of $[W_{2}I_{4}(CO)_{6}(PPh_{3})_{2}(\mu-S_{2}CPCy_{3})] \cdot CH_{2}Cl_{2}$ (18)

To $[WI_2(CO)_3(NCMe)_2]$ (0.500 g, 0.828 mmol) dissolved in CH_2Cl_2 (15 cm³) with continuous stirring under a stream of dry nitrogen was added PPh₃ (0.217 g, 0.828 mmol). After stirring for 1 min, S_2CPCy_3 (0.147 g, 0.414 mmol) was added. The mixture was stirred for 30 min. Filtration, followed by removal of the solvent *in vacuo* gave the dark brown complex $[W_2I_4(CO)_6(PPh_3)_2(\mu-S_2CPCy_3)] \cdot CH_2Cl_2$ (18), (0.68 g, 82%) which was recrystallised from CH_2Cl_2 .

Acknowledgements

We thank Dr O.W. Howarth for measuring the low temperature ¹³C NMR spectra of several of the seven-coordinate complexes at the University of Warwick.

References

- 1 G.J.-J. Chen, R.O. Yelton and J.W. McDonald, Inorg. Chim. Acta, 22 (1977) 249.
- 2 B.C. Ward and J.L. Templeton, Inorg. Chem., 19 (1980) 1753.
- 3 J.A. Broomhead and C.G. Young, Aust. J. Chem., 35 (1982) 277.
- 4 J.R. Dilworth, B.D. Neaves, C.J. Pickett, J. Chatt and J.A. Zubieta, Inorg. Chem., 22 (1983) 3524.
- 5 E. Carmona, K. Doppert, J.M. Marin, M.L. Poveda, L. Sanchez and R. Sanchez-Delgado, Inorg. Chem., 23 (1984) 530.
- 6 J.R. Morrow, T.L. Tonker, J.L. Templeton and W.R. Kenan, Jr., J. Am. Chem. Soc., 197 (1985) 6956.
- 7 P.K. Baker and K.R. Flower, J. Coord. Chem., 15 (1987) 333.
- 8 H.C.E. Mannerskantz and G. Wilkinson, J. Chem. Soc., (1962) 4454.
- 9 R. Colton and P. Panagiotidou, Aust. J. Chem., 40 (1987) 13.
- 10 P.K. Baker, S.G. Fraser and E.M. Keys, J. Organomet. Chem., 309 (1986) 319.
- 11 P.K. Baker and S.G. Fraser, Polyhedron, 6 (1987) 2081.
- 12 P.K. Baker and D. ap Kendrick, Inorg. Chim. Acta, 174 (1990) 119.
- 13 D. Miguel, V. Riera, J.A. Miguel, C. Bois, M. Philoche-Levisalles and Y. Jeannin, J. Chem. Soc., Dalton Trans., (1987) 2875.
- 14 P.K. Baker and S.G. Fraser, Transition Met. Chem., 12 (1987) 560.
- 15 R. Colton and J. Kevekordes, Aust. J. Chem., 35 (1982) 895.
- 16 O.A. Ganscow and W.D. Vernon, Top. ¹³C NMR Spectrosc., 2 (1976) 270.
- 17 A. Mawby and G.E. Pringle, J. Inorg. Nucl. Chem., 34 (1972) 517.
- 18 M.C.B. Drew, J. Chem. Soc., Dalton Trans., (1972) 626.
- 19 M.C.B. Drew, J. Chem. Soc., Dalton Trans., (1972) 1329.
- 20 C. Schmid, R. Boese and E. Welz, Chem. Ber., 108 (1975) 260.
- 21 M.G.B. Drew and J.D. Wilkins, J. Chem. Soc., Dalton Trans., (1977) 194.
- 22 M.G.B. Drew and A.P. Wolters, Acta Crystallogr., Sect. B, 33 (1977) 205.
- 23 P.K. Baker, S.G. Fraser and M.G.B. Drew, J. Chem. Soc., Dalton Trans., (1988) 2729.
- 24 M.G.B. Drew, P.K. Baker, E.M. Armstrong and S.G. Fraser, Polyhedron, 7 (1988) 245.
- 25 P.K. Baker and S.G. Fraser, Inorg. Chim. Acta, 116 (1986) L1.